
Software Testing Methodologies CIE I

1. What is Software Testing? Is Complete Testing Possible?
Software testing is the process of evaluating and verifying that a software application or system works
as intended. It aims to detect errors, gaps, or missing requirements.

Complete testing (i.e., testing all possible inputs and paths) is not possible for most real-world
applications due to the infinite number of input combinations and execution paths. Hence, testing is
done using strategies like equivalence partitioning, path testing, etc., to gain confidence in
correctness.

2. What is meant by Transaction Flow Testing?
Transaction Flow Testing is a white-box testing technique that focuses on logical transactions rather
than individual program paths. It uses Transaction Flow Graphs to represent sequences of operations
(or transactions) and tests them for correct processing.

Example: A user login followed by a dashboard view can be modeled and tested as a transaction flow.

3. Define Path Predicate with an example?
A path predicate is a Boolean expression formed by the conditions along a specific path in the
programʼs control flow graph. It determines whether a path is executable under certain input values.

Example:

if (x  0 
 if (y  10 
 // path A
 }
}

Path predicate for path A (x  0 AND (y  10

4. How does Interface testing relate to domain testing?
Interface Testing in domain testing checks how different input domains or components interact with
each other at their boundaries. It ensures that the software behaves correctly when inputs from one
domain are passed to another module or interface.

Itʼs important in boundary value analysis and helps detect mismatches or data interpretation errors
between domains.

5. How are regular expression used in path testing?
Regular expressions are used to represent sets of paths in the control flow graph compactly.

Software Testing Methodologies CIE I 1

They help in modeling all possible execution paths using symbols and operators (like * , | , ()) and
are particularly useful in identifying redundant or invalid paths.

Example:

For a loop, paths like AB*C can be expressed to denote paths from A to C with 0 or more Bʼs.

6. Explain the reduction procedure for simplifying flow graphs
The reduction procedure simplifies complex flow graphs by replacing subgraphs with simpler
symbols without changing their logical behavior.

Steps:

Identify regions like sequences, loops, and decisions.

Replace these with single nodes or edges.

Repeat until the graph reduces to a single node or simpler form.

This helps in easier analysis and finding independent paths for testing.

1. Differentiate Achievable Non Achievable Paths in path testing and
examples

Aspect Achievable Path Non-Achievable Path

Definition A path that can be traversed with valid input
A path that cannot be traversed under any
condition

Input Condition Exists and makes the path executable No input condition makes the path executable

Path Predicate Satisfiable (evaluates to true for some input) Unsatisfiable (always false)

Testing
Purpose Included in test cases for coverage Eliminated from test case design

Code Example if (x  5  /* path A */ } with x  6 if (x  5 && x  3  /* path B */ } (always false)

Tool Support
Detected as executable by static/dynamic
tools Detected as unreachable code

Example for Achievable:

if (x  0 
 printf("Positive");
}

Path: Entry  Condition True  Print  Exit

Achievable when x  5

Example for Non Achievable:

if (x  0 && x  0 
 printf("Impossible");

Software Testing Methodologies CIE I 2

}

Condition x  0 && x  0 is always false

No value of x satisfies it  Path is non-achievable

Impact on Path Testing:
Identifying achievable paths ensures realistic test cases.

Removing non-achievable paths avoids wasted effort in test design

2. Discuss applications of path products in test coverage analysis
A path product is an algebraic representation of all execution paths through a program or control flow
graph CFG. It uses concatenation, choice |, and iteration (*) operators similar to regular
expressions

Syntax Overview:
Concatenation AB Sequential execution of paths A and B

Choice A | B Either path A or path B

Iteration A*) Zero or more repetitions of path A

Application Explanation

1. Compact Path
Representation

Path products represent multiple possible execution paths concisely, helping testers
see the big picture.

2. Independent Path
Identification

By analyzing path products, testers can isolate linearly independent paths for basis
path testing.

3. Loop Analysis
Loops are represented with the * operator, allowing testers to design test cases for
zero, one, or many iterations.

4. Test Case Derivation
By converting the path product into specific paths, one can directly derive test cases
that ensure branch or path coverage.

5. Dead Code Detection
If certain code segments never appear in any path product, they may indicate
unreachable code.

6. Regression Testing
Support

When software is updated, testers can compare new path products to old ones to
check coverage changes.

Consider a flow graph with this structure:

text
CopyEdit
Start  A  B or C  D  End

Path Product: AB | CD

Represents two paths:

Software Testing Methodologies CIE I 3

 A  B  D

 A  C  D

Enables identifying minimum test cases for decision/branch coverage

Benefits in Coverage Analysis:
Enhances test completeness by explicitly covering all possible control paths.

Facilitates structured test design using mathematical principles.

Avoids redundant or infeasible path testing by simplifying flow

Software Testing Methodologies CIE I 4

